Fast and Accurate Arc Filtering for Dependency Parsing

نویسندگان

  • Shane Bergsma
  • Colin Cherry
چکیده

We propose a series of learned arc filters to speed up graph-based dependency parsing. A cascade of filters identify implausible head-modifier pairs, with time complexity that is first linear, and then quadratic in the length of the sentence. The linear filters reliably predict, in context, words that are roots or leaves of dependency trees, and words that are likely to have heads on their left or right. We use this information to quickly prune arcs from the dependency graph. More than 78% of total arcs are pruned while retaining 99.5% of the true dependencies. These filters improve the speed of two state-ofthe-art dependency parsers, with low overhead and negligible loss in accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر ساخت‌واژه‌ها در تجزیه وابستگی زبان فارسی

Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Joint Training of Dependency Parsing Filters through Latent Support Vector Machines

Graph-based dependency parsing can be sped up significantly if implausible arcs are eliminated from the search-space before parsing begins. State-of-the-art methods for arc filtering use separate classifiers to make pointwise decisions about the tree; they label tokens with roles such as root, leaf, or attaches-tothe-left, and then filter arcs accordingly. Because these classifiers overlap subs...

متن کامل

Yara Parser: A Fast and Accurate Dependency Parser

Dependency parsers are among the most crucial tools in natural language processing as they have many important applications in downstream tasks such as information retrieval, machine translation and knowledge acquisition. We introduce the Yara Parser, a fast and accurate open-source dependency parser based on the arc-eager algorithm and beam search. It achieves an unlabeled accuracy of 93.32 on...

متن کامل

Beyond Chart Parsing: An Analytic Comparison of Dependency Chart Parsing Algorithms

In this paper, we give a summary of various dependency chart parsing algorithms in terms of the use of parsing histories for a new dependency arc decision. Some parsing histories are closely related to the target dependency arc, and it is necessary for the parsing algorithm to take them into consideration. Each dependency treebank may have some unique characteristics, and it requires for the pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010